

General Aptitude (GA)

Q.1 – Q.5 Carry ONE mark Each

Q.1	If ' \rightarrow ' denotes increasing order of intensity, then the meaning of the words		
	[talk \rightarrow shout \rightarrow scream] is analogous to [please \rightarrow \rightarrow pander].		
	Which one of the given options is appropriate to fill the blank?		
(A)	flatter		
(B)	flutter		
(C)	fritter		
(D)	frizzle		

Q.2 P and Q have been allotted a hostel room with two beds, a study table, and an almirah. P is an avid bird-watcher and wants to sit at the table and watch birds outside the window. Q does not mind that as long as his bed is close to the ceiling fan.

Which one of the following arrangements suits them the most?

Q.3	The decimal number system uses the characters 0, 1, 2,, 8, 9, and the ocnumber system uses the characters $0, 1, 2,, 6, 7$.		
	For example, the decimal number 12 (= $1 \times 10^{1} + 2 \times 10^{0}$) is expressed as 14 (= $1 \times 8^{1} + 4 \times 8^{0}$) in the octal number system.		
	The decimal number 108 in the octal number system is		
(A)	168		
(B)	108		
(C)	150		
(D)	154		
Q.4	A shopkeeper buys shirts from a producer and sells them at 20% profit. A customer has to pay ₹3,186.00 including 18% taxes, per shirt. At what price did the shopkeeper buy each shirt from the producer?		
(A)	₹2,500.00		
(B)	₹1,975.40		
(C)	₹2,250.00		
(D)	₹2,548.80		

Q.5	If, for non-zero real variables x , y , and real parameter $a > 1$,		
	x: y = (a + 1) : (a - 1),		
	then, the ratio $(x^2 - y^2) : (x^2 + y^2)$ is		
(A)	$2a:(a^2+1)$		
(B)	$a:(a^2+1)$		
(C)	$2a:(a^2-1)$		
(D)	$a:(a^2-1)$		

-

Q.6 – Q.10 Carry TWO marks Each

Q.6	In the given text, the blanks are numbered (i)–(iv). Select the best match for all the blanks.			
	Following a cook stood	$\frac{\text{row} (i)}{(iii)} t$	ne shopkeeper v to withdraw o	$\underbrace{(ii)}_{(iv)}$ the price of a frying pan, the cash $\underbrace{(iv)}_{(iv)}$ the ATM booth.
(A)	(i) with	(ii) over	(iii) at	(iv) with
(B)	(i) at	(ii) over	(iii) over	(iv) in
(C)	(i) with	(ii) over	(iii) in	(iv) at
(D)	(i) over	(ii) with	(iii) over	(iv) at

Q.10	A surveyor has to measure the horizontal distance from her position to a distant reference point C. Using her position as the center, a 200 m horizontal line segment is drawn with the two endpoints A and B. Points A, B, and C are not collinear. Each of the angles \angle CAB and \angle CBA are measured as 87.8°. The distance (in m) of the reference point C from her position is nearest to		
(A)	2603		
(B)	2606		
(C)	2306		
(D)	2063		

Q.11 – Q.35 Carry ONE mark Each

Q.11	Which one of the following matrices has an inverse?	
(A)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 0.5 & 2 & 4 \end{bmatrix}$	
(B)	$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 2 & 9 \end{bmatrix}$	
(C)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 1 & 2 & 4 \end{bmatrix}$	
(D)	$\begin{bmatrix} 1 & 4 & 8 \\ 0 & 4 & 2 \\ 3 & 12 & 24 \end{bmatrix}$	

Q.12	The number of junctions in the circuit is	
(A)	6	
(B)	7	
(C)	8	
(D)	9	

Q.13	All the elements in the circuit are ideal. The power delivered by the 10 V source in watts is	
	10 V + 10 A	
(A)	0	
(B)	50	
(C)	100	
(D)	dependent on the value of α	

Q.14	The circuit shown in the figure with the switch S open, is in steady state. After the switch S is closed, the time constant of the circuit in seconds is		
	$\begin{array}{c} & & 1 \\ & & 1 \\ & & 1 \\ 1 \\ & &$		
(A)	1.25		
(B)	0		
(C)	1		
(D)	1.5		

-			
Q.15	Suppose signal $y(t)$ is obtained by the time-reversal of signal $x(t)$, i.e., $y(t) = x(-t)$, $-\infty < t < \infty$. Which one of the following options is always true for the convolution of $x(t)$ and $y(t)$?		
(A)	It is an even signal.		
(B)	It is an odd signal.		
(C)	It is a causal signal.		
(D)	It is an anti-causal signal.		
Q.16	If $u(t)$ is the unit step function, then the region of convergence (ROC) of the Laplace transform of the signal		
	$x(t) = e^{t^2} [u(t-1) - u(t-10)]$		
	is		
(A)	$-\infty < \operatorname{Re}(s) < \infty$		
(B)	$\operatorname{Re}(s) \ge 10$		
(C)	$\operatorname{Re}(s) \leq 1$		
(D)	$1 \le \operatorname{Re}(s) \le 10$		

Q.17	A three phase, 50 Hz, 6 pole induction motor runs at 960 rpm. The stator copper loss, core loss, and the rotational loss of the motor can be neglected. The percentage efficiency of the motor is		
(A)	92		
(B)	94		
(C)	96		
(D)	98		

Q.18 Which one of the following options represents possible voltage polarities in a single phase two winding transformer? Here, V_p is the applied primary voltage, E_p is the induced primary voltage, V_s is the open circuit secondary voltage, and E_s is the induced secondary voltage. (A) ~ + +-0 + V_s $+ E_s$ $V_p E_p$ -0 0-(B) -0 Vp + E_p E_s V_s ++ (C) + E_p E_s V_p V_s +(D) ╋ $-V_s$ ++ E_s + E_p V_p +

Q.19 The figure shows the single line diagram of a 4-bus power network. Branches b_1 , b_2 , b_3 , and b_4 have impedances 4z, z, 2z, and 4z per-unit (pu), respectively, where z = r + jx, with r > 0 and x > 0. The current drawn from each load bus (marked as arrows) is equal to I pu, where $I \neq 0$. If the network is to operate with minimum loss, the branch that should be opened is

Q.22 Consider the cascaded system as shown in the figure. Neglecting the faster component of the transient response, which one of the following options is a first-order pole-only approximation such that the steady-state values of the unit step responses of the original and the approximated systems are same?

Q.23	The table lists two instrument transformers and their features:		
	Instrument Transformers	Features	
		P) Primary is connected in parallel to the grid	
	X) Current Transformer (CT)	Q) Open circuited secondary is not desirable	
	Y) Potential Transformer (PT)	R) Primary current is the line current	
		S) Secondary burden affects the primary current	
	The correct matching of the two columns is		
(A)	X matches with P and Q; Y matches with R and S.		
(B)	X matches with P and R; Y matches with Q and S.		
(C)	X matches with Q and R; Y matches with P and S.		
(D)	X matches with Q and S; Y matches with P and R.		

Q.24	Simplified form of the Boolean function
	$F(P,Q,R,S) = \overline{P}\overline{Q} + \overline{P}QS + P\overline{Q}\overline{R}\overline{S} + P\overline{Q}R\overline{S}$
	is
(A)	$\bar{P}S + \bar{Q}\bar{S}$
(B)	$\bar{P}\bar{Q} + \bar{Q}\bar{S}$
(C)	$\bar{P}Q + R\bar{S}$
(D)	$P\bar{S} + Q\bar{R}$

Q.27	If the following switching devices have similar power ratings, which one of them is the fastest?
(A)	SCR
(B)	GTO
(C)	IGBT
(D)	Power MOSFET
Q.28	A single-phase triac based AC voltage controller feeds a series RL load. The input AC supply is 230 V, 50 Hz. The values of R and L are 10 Ω and 18.37 mH, respectively. The minimum triggering angle of the triac to obtain controllable output voltage is
(A)	15°
(B)	30°
(C)	45°
(D)	60°

Q.29	Let X be a discrete random variable that is uniformly distributed over the set $\{-10, -9, \dots, 0, \dots, 9, 10\}$. Which of the following random variables is/are uniformly distributed?
(A)	X^2
(B)	X ³
(C)	$(X-5)^2$
(D)	$(X + 10)^2$
Q.30	Which of the following complex functions is/are analytic on the complex plane?
(A)	$f(z) = j\operatorname{Re}(z)$
(B)	$f(z) = \operatorname{Im}(z)$
(C)	$f(z) = e^{ z }$
(D)	$f(z) = z^2 - z$

Q.31	Consider the complex function $f(z) = \cos z + e^{z^2}$. The coefficient of z^5 in the Taylor series expansion of $f(z)$ about the origin is (rounded off to 1 decimal place).
Q.32	The sum of the eigenvalues of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}^2$ is (rounded off to the nearest integer).
Q.33	Let $X(\omega)$ be the Fourier transform of the signal
	$x(t) = e^{-t^4} \cos t, \qquad -\infty < t < \infty.$
	The value of the derivative of $X(\omega)$ at $\omega = 0$ is (rounded off to 1 decimal place).

Q.35 A forced commutated thyristorized step-down chopper is shown in the figure. Neglect the ON-state drop across the power devices. Assume that the capacitor is initially charged to 50 V with the polarity shown in the figure. The load current (I_L) can be assumed to be constant at 10 A. Initially, Th_M is ON and Th_A is OFF. The turn-off time available to Th_M in microseconds, when Th_A is triggered, is ______ (rounded off to the nearest integer).

Q.36 – Q.65 Carry TWO marks Each

Q.36	Consider a vector $\bar{u} = 2\hat{x} + \hat{y} + 2\hat{z}$, where $\hat{x}, \hat{y}, \hat{z}$ represent unit vectors along the coordinate axes x, y, z respectively. The directional derivative of the function $f(x, y, z) = 2\ln(xy) + \ln(yz) + 3\ln(xz)$ at the point $(x, y, z) = (1, 1, 1)$ in the direction of \bar{u} is
(A)	0
(B)	$\frac{7}{5\sqrt{2}}$
(C)	7
(D)	21

Q.37	The input $x(t)$ and the output $y(t)$ of a system are related as
	$y(t) = e^{-t} \int_{-\infty}^{t} e^{\tau} x(\tau) d\tau, \qquad -\infty < t < \infty.$
	The system is
(A)	nonlinear.
(B)	linear and time-invariant.
(C)	linear but not time-invariant.
(D)	noncausal.

Q.38	Consider the discrete-time systems T_1 and T_2 defined as follows:
	$\{T_1x\}[n] = x[0] + x[1] + \dots + x[n]$
	$\{T_2x\}[n] = x[0] + \frac{1}{2}x[1] + \dots + \frac{1}{2^n}x[n]$
	Which one of the following statements is true?
(A)	T_1 and T_2 are BIBO stable.
(B)	T_1 and T_2 are not BIBO stable.
(C)	T_1 is BIBO stable but T_2 is not BIBO stable.
(D)	T_1 is not BIBO stable but T_2 is BIBO stable.

Q.39	If the Z-transform of a finite-duration discrete-time signal $x[n]$ is $X(z)$, then the Z-transform of the signal $y[n] = x[2n]$ is
(A)	$Y(z) = X(z^2)$
(B)	$Y(z) = \frac{1}{2} \left[X(z^{-1/2}) + X(-z^{-1/2}) \right]$
(C)	$Y(z) = \frac{1}{2} \left[X(z^{1/2}) + X(-z^{1/2}) \right]$
(D)	$Y(z) = \frac{1}{2} [X(z^2) + X(-z^2)]$
Q.40	A 3-phase, 11 kV, 10 MVA synchronous generator is connected to an inductive load of power factor $(\sqrt{3}/2)$ via a lossless line with a per-phase inductive reactance of 5 Ω . The per-phase synchronous reactance of the generator is 30 Ω with negligible armature resistance. If the generator is producing the rated current at the rated voltage, then the power factor at the terminal of the generator is
(A)	0.63 lagging.
(B)	0.87 lagging.
(C)	0.63 leading.
(D)	0.87 leading.

Q.41 For the three-bus lossless power network shown in the figure, the voltage magnitudes at all the buses are equal to 1 per unit (pu), and the differences of the voltage phase angles are very small. The line reactances are marked in the figure, where α , β , γ , and x are strictly positive. The bus injections P_1 and P_2 are in pu. If $P_1 = mP_2$, where m > 0, and the real power flow from bus 1 to bus 2 is 0 pu, then which one of the following options is correct?

Q.43	Let $f(t)$ be a real-valued function whose second derivative is positive for $-\infty < t < \infty$. Which of the following statements is/are always true?
(A)	f(t) has at least one local minimum.
(B)	f(t) cannot have two distinct local minima.
(C)	f(t) has at least one local maximum.
(D)	The minimum value of $f(t)$ cannot be negative.
Q.44	Consider the function $f(t) = (\max(0, t))^2$ for $-\infty < t < \infty$, where $\max(a, b)$ denotes the maximum of <i>a</i> and <i>b</i> . Which of the following statements is/are true?
(A)	f(t) is not differentiable.
(B)	f(t) is differentiable and its derivative is continuous.
(C)	f(t) is differentiable but its derivative is not continuous.
(D)	f(t) and its derivative are differentiable.

Г

Т

Q.45	Which of the following differential equations is/are nonlinear?
(A)	$t x(t) + \frac{dx(t)}{dt} = t^2 e^t, \qquad x(0) = 0$
(B)	$\frac{1}{2}e^{t} + x(t)\frac{dx(t)}{dt} = 0, \qquad x(0) = 0$
(C)	$x(t)\cos t - \frac{dx(t)}{dt}\sin t = 1, \qquad x(0) = 0$
(D)	$x(t) + e^{\left(\frac{dx(t)}{dt}\right)} = 1, \qquad x(0) = 0$
Q.46	For a two-phase network, the phase voltages V_p and V_q are to be expressed in terms of sequence voltages V_{α} and V_{β} as $\begin{bmatrix} V_p \\ V_q \end{bmatrix} = \mathbf{S} \begin{bmatrix} V_{\alpha} \\ V_{\beta} \end{bmatrix}$. The possible option(s) for matrix S is/are
(A)	$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$
(B)	$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$
(C)	$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
(D)	$\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

Q.47	Which of the following options is/are correct for the Automatic Generation Control (AGC) and Automatic Voltage Regulator (AVR) installed with synchronous generators?
(A)	AGC response has a local effect on frequency while AVR response has a global effect on voltage.
(B)	AGC response has a global effect on frequency while AVR response has a local effect on voltage.
(C)	AGC regulates the field current of the synchronous generator while AVR regulates the generator's mechanical power input.
(D)	AGC regulates the generator's mechanical power input while AVR regulates the field current of the synchronous generator.

Q.50	In the circuit shown, $Z_1 = 50 \angle -90^\circ \Omega$ and $Z_2 = 200 \angle -30^\circ \Omega$. It is supplied by a three phase 400 V source with the phase sequence being R-Y-B. Assume the watt meters W_1 and W_2 to be ideal. The magnitude of the difference between the readings of W_1 and W_2 in watts is (rounded off to 2 decimal places).
	$R \xrightarrow{\begin{pmatrix} cc \\ + \\ 000 \\ - \\ pc \\ 000 \\ - \\ Z_1 \\ Z_2 \\ $
Q.51	In the (x, y, z) coordinate system, three point-charges Q , Q , and αQ are located in free space at $(-1, 0, 0)$, $(1, 0, 0)$, and $(0, -1, 0)$, respectively. The value of α for the electric field to be zero at $(0, 0.5, 0)$ is (rounded off to 1 decimal place).
Q.52	The given equation represents a magnetic field strength $\overline{H}(r, \theta, \phi)$ in the spherical coordinate system, in free space. Here, \hat{r} and $\hat{\theta}$ represent the unit vectors along r and θ , respectively. The value of P in the equation should be (rounded off to the nearest integer).
	$\overline{H}(r,\theta,\phi) = \frac{1}{r^3} \left(\hat{r} P \cos \theta + \hat{\theta} \sin \theta \right)$
Q.53	If the energy of a continuous-time signal $x(t)$ is E and the energy of the signal $2x(2t-1)$ is cE , then c is (rounded off to 1 decimal place).

Q.54	A 3-phase star connected slip ring induction motor has the following parameter referred to the stator:				
	$R_s = 3 \Omega, X_s = 2 \Omega, X'_r = 2 \Omega, R'_r = 2.5 \Omega$				
	The per phase stator to rotor effective turns ratio is 3:1. The rotor winding is also star connected. The magnetizing reactance and core loss of the motor can be neglected. To have maximum torque at starting, the value of the extra resistance in ohms (referred to the rotor side) to be connected in series with each phase of the rotor winding is (rounded off to 2 decimal places).				
Q.55	A 5 kW, 220 V DC shunt motor has 0.5 Ω armature resistance including brushes. The motor draws a no-load current of 3 A. The field current is constant at 1 A. Assuming that the core and rotational losses are constant and independent of the load, the current (in amperes) drawn by the motor while delivering the rated load, for the best possible efficiency, is (rounded off to 2 decimal places).				
Q.56	The single line diagram of a lossless system is shown in the figure. The system is operating in steady-state at a stable equilibrium point with the power output of the generator being $P_{max} \sin \delta$, where δ is the load angle and the mechanical power input is $0.5P_{max}$. A fault occurs on line 2 such that the power output of the generator is less than $0.5P_{max}$ during the fault. After the fault is cleared by opening line 2, the power output of the generator is $\{P_{max}/\sqrt{2}\}\sin \delta$. If the critical fault clearing angle is $\pi/2$ radians, the accelerating area on the power angle curve is times P_{max} (rounded off to 2 decimal places).				
	Line 1				
	Generator bus				

Q.59	Conside phase v the gain places)	er the stable closed-l values of the frequenc in K_I (> 0) for a 50°	oop system shown in y response of <i>G(s)</i> are phase margin is	the figure. The magnitude a e given in the table. The value (rounded off to 2 decir	and e of mal
		ω in rad/sec	Magnitude in dB	Phase in degrees	
		0.5	-7	-40	
		1.0	-10	-80	
		2.0	-18	-130	
		10.0	-40	-200	
	R		$+$ $\frac{K_I}{s}$	<i>G</i> (<i>s</i>)	

Q.61	A difference amplifier is shown in the figure. Assume the op-amp to be ideal. The CMRR (in dB) of the difference amplifier is (rounded off to 2 decimal places).
	v_{in1} v_{in1} v_{in2} v_{i
Q.62	A single-phase half-controlled bridge converter supplies an inductive load with ripple free load current. The triggering angle of the converter is 60°. The ratio of the rms value of the fundamental component of the input current to the rms value of the total input current of the bridge is (rounded off to 3 decimal places).
Q.63	A single-phase full bridge voltage source inverter (VSI) feeds a purely inductive load. The inverter output voltage is a square wave in 180° conduction mode. The fundamental frequency of the output voltage is 50 Hz. If the DC input voltage of the inverter is 100 V and the value of the load inductance is 20 mH, the peak-to-peak load current in amperes is (rounded off to the nearest integer).

Q.64	In the DC-DC converter shown in the figure, the current through the inductor is continuous. The switching frequency is 500 Hz. The voltage (V_o) across the load is assumed to be constant and ripple free. The peak inductor current in amperes is (rounded off to the nearest integer).			
	$V_i = 20 \text{ V}$	$L = 2 \text{ mH}$ I_i F	$V_o = 40 \text{ V}$	10 Ω
			J	
Q.65	A single-phase full-controlled thyristor converter bridge is used for regenerative braking of a separately excited DC motor with the following specifications:			
		Rated armature voltage	210 V	
	Rated armature current		10 A	
	Rated speed		1200 rpm	
	Armature resistance		1 Ω	
		Input to the converter bridge	240 V at 50 Hz	
		The armature of the DC motor is fed from the full-controlled bridge and the field current is kept constant.		
	Assume that the motor are suital motor is to be a bridge in degree	the motor is running at 600 rpm bly reversed for regenerative bra maintained at the rated value, the es should be (rou	and the armature taking. If the armature to the armature triggering angle ounded off to 2 decimates and the triggering the triggering angle off the taken are triggering are triggering angle of taken are triggering are triggering angle of taken are triggering are triggeri	terminals of the converter the converter the converter the places).

GRADUATE APTITUDE TEST IN ENGINEERING 2024

अभियांत्रिकी स्नातक अभिक्षमता परीक्षा २०२४ ORGANISING INSTITUTE: INDIAN INSTITUTE OF SCIENCE, BENGALURU

1

B; D

Electrical Engineering (EE) Master Answer Key Question Q. No. Session Key/Range Section Mark Туре 8 MCQ GA 1 1 А 2 MCQ GA 8 А 1 3 8 MCQ GA D 1 4 8 MCQ GA С 1 5 8 MCQ GA А 1 8 MCQ GA С 2 6 7 8 MCQ GA А 2 8 8 MCQ GA С 2 9 8 В 2 MCQ GA 10 8 MCQ GA А 2 8 С 11 MCQ EΕ 1 12 8 MCQ EE А 1 8 А 1 13 MCQ EΕ 14 8 MCQ EΕ А 1 15 8 MCQ EΕ А 1 8 16 MCQ EΕ А 1 17 8 MCQ EΕ С 1 18 8 MCQ В 1 EE 19 8 MCQ EΕ С 1 20 8 D MCQ EΕ 1 21 8 MCQ EE В 1 22 8 1 MCQ EΕ В 23 8 MCQ С 1 EΕ 24 8 MCQ EΕ A 1 8 С 25 MCQ EE 1 26 8 MCQ EE В 1 27 8 D 1 MCQ EE 28 8 MCQ EΕ В 1

EΕ

8

MSQ

30	8	MSQ	EE	D	1
31	8	NAT	EE	0.0 to 0.0	1
32	8	NAT	EE	29 to 29	1
33	8	NAT	EE	0.0 to 0.0	1
34	8	NAT	EE	35 to 35	1
35	8	NAT	EE	50 to 50	1
36	8	MCQ	EE	С	2
37	8	MCQ	EE	В	2
38	8	MCQ	EE	D	2
39	8	MCQ	EE	С	2
40	8	MCQ	EE	А	2
41	8	MCQ	EE	А	2
42	8	MCQ	EE	А	2
43	8	MSQ	EE	В	2
44	8	MSQ	EE	В	2
45	8	MSQ	EE	B; D	2
46	8	MSQ	EE	A; D	2
47	8	MSQ	EE	B; D	2
48	8	NAT	EE	-19.90 to -19.70	2
49	8	NAT	EE	5.32 to 5.34	2
50	8	NAT	EE	692.80 to 692.84	2
51	8	NAT	EE	-1.7 to -1.5	2
52	8	NAT	EE	2 to 2	2
53	8	NAT	EE	2.0 to 2.0	2
54	8	NAT	EE	0.26 to 0.29	2
55	8	NAT	EE	27.19 to 27.39	2
56	8	NAT	EE	0.10 to 0.12	2
57	8	NAT	EE	4 to 8	2
58	8	NAT	EE	0.09 to 0.11	2
59	8	NAT	EE	1.11 to 1.13	2
60	8	NAT	EE	1.64 to 1.70	2
61	8	NAT	EE	39.50 to 41.50	2
62	Ŭ				
02	8	NAT	EE	0.940 to 0.970	2
63	8 8	NAT NAT	EE EE	0.940 to 0.970 50 to 50	2
63 64	8 8 8 8	NAT NAT NAT	EE EE EE	0.940 to 0.970 50 to 50 13 to 13	2 2 2